Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Taming transport in InN : Indium Nitride and Related Alloys

Identifieur interne : 001407 ( Main/Repository ); précédent : 001406; suivant : 001408

Taming transport in InN : Indium Nitride and Related Alloys

Auteurs : RBID : Pascal:12-0043530

Descripteurs français

English descriptors

Abstract

The large electron affinity of InN, close to 6 eV and the largest of any III-V semiconductor, creates a strong driving force for native donor formation, both in the bulk and at surfaces and interfaces. Moreover, all InN surfaces. regardless of crystal orientation or doping, have been observed to have a surface accumulation layer of electrons, which interferes with standard electrical measurements. For these reasons, until recently, it was uncertain whether or not compensation by donor defects would prevent "real" p-type activity (i.e., existence of sufficiently shallow acceptors and mobile holes). A coordinated experimental approach using a combination of electrical (Hall effect) and electrothermal (Seebeck coefficient) measurements will be described that allows definitive evaluation of carrier transport in InN. In Mg-doped InN films, the sensitivity of thermopower to bulk hole conduction, combined with modeling of the parallel conducting layers (surface/bulk/interface), enables quantitative measurement of the free hole concentration and mobility. In undoped (n-type) material, combined Hall and thermopower measurements, along with a considering of the scattering mechanisms, leads to a quantitative understanding of the crucial role of charged line defects in limiting electron transport.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:12-0043530

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Taming transport in InN : Indium Nitride and Related Alloys</title>
<author>
<name sortKey="Ager, Joel W Iii" uniqKey="Ager J">Joel W. Iii Ager</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Materials Sciences Division, Lawrence Berkeley National Lab.</s1>
<s2>Berkeley, CA 94720</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Berkeley, CA 94720</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Miller, Nate R" uniqKey="Miller N">Nate R. Miller</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Materials Sciences Division, Lawrence Berkeley National Lab.</s1>
<s2>Berkeley, CA 94720</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Berkeley, CA 94720</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Emcore, Albuquerque</s1>
<s2>NM 87123</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Nouveau-Mexique</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">12-0043530</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0043530 INIST</idno>
<idno type="RBID">Pascal:12-0043530</idno>
<idno type="wicri:Area/Main/Corpus">002380</idno>
<idno type="wicri:Area/Main/Repository">001407</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1862-6300</idno>
<title level="j" type="abbreviated">Phys. status solidi, A Appl. mater. sci. : (Print)</title>
<title level="j" type="main">Physica status solidi. A, Applications and materials science : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Accumulation layers</term>
<term>Carrier mobility</term>
<term>Dislocations</term>
<term>Donor center</term>
<term>Doping</term>
<term>Hall effect</term>
<term>III-V semiconductors</term>
<term>Impurity density</term>
<term>Indium nitride</term>
<term>Inversion layers</term>
<term>Magnesium additions</term>
<term>Molecular beam epitaxy</term>
<term>Seebeck effect</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Dislocation</term>
<term>Addition magnésium</term>
<term>Concentration impureté</term>
<term>Dopage</term>
<term>Epitaxie jet moléculaire</term>
<term>Couche accumulation</term>
<term>Couche inversion</term>
<term>Centre donneur</term>
<term>Effet Hall</term>
<term>Effet Seebeck</term>
<term>Mobilité porteur charge</term>
<term>Nitrure d'indium</term>
<term>Semiconducteur III-V</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Dopage</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The large electron affinity of InN, close to 6 eV and the largest of any III-V semiconductor, creates a strong driving force for native donor formation, both in the bulk and at surfaces and interfaces. Moreover, all InN surfaces. regardless of crystal orientation or doping, have been observed to have a surface accumulation layer of electrons, which interferes with standard electrical measurements. For these reasons, until recently, it was uncertain whether or not compensation by donor defects would prevent "real" p-type activity (i.e., existence of sufficiently shallow acceptors and mobile holes). A coordinated experimental approach using a combination of electrical (Hall effect) and electrothermal (Seebeck coefficient) measurements will be described that allows definitive evaluation of carrier transport in InN. In Mg-doped InN films, the sensitivity of thermopower to bulk hole conduction, combined with modeling of the parallel conducting layers (surface/bulk/interface), enables quantitative measurement of the free hole concentration and mobility. In undoped (n-type) material, combined Hall and thermopower measurements, along with a considering of the scattering mechanisms, leads to a quantitative understanding of the crucial role of charged line defects in limiting electron transport.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1862-6300</s0>
</fA01>
<fA03 i2="1">
<s0>Phys. status solidi, A Appl. mater. sci. : (Print)</s0>
</fA03>
<fA05>
<s2>209</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Taming transport in InN : Indium Nitride and Related Alloys</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>AGER (Joel W. III)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>MILLER (Nate R.)</s1>
</fA11>
<fA14 i1="01">
<s1>Materials Sciences Division, Lawrence Berkeley National Lab.</s1>
<s2>Berkeley, CA 94720</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Emcore, Albuquerque</s1>
<s2>NM 87123</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>83-86</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>10183A</s2>
<s5>354000505973280150</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>35 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0043530</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Physica status solidi. A, Applications and materials science : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>DEU</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The large electron affinity of InN, close to 6 eV and the largest of any III-V semiconductor, creates a strong driving force for native donor formation, both in the bulk and at surfaces and interfaces. Moreover, all InN surfaces. regardless of crystal orientation or doping, have been observed to have a surface accumulation layer of electrons, which interferes with standard electrical measurements. For these reasons, until recently, it was uncertain whether or not compensation by donor defects would prevent "real" p-type activity (i.e., existence of sufficiently shallow acceptors and mobile holes). A coordinated experimental approach using a combination of electrical (Hall effect) and electrothermal (Seebeck coefficient) measurements will be described that allows definitive evaluation of carrier transport in InN. In Mg-doped InN films, the sensitivity of thermopower to bulk hole conduction, combined with modeling of the parallel conducting layers (surface/bulk/interface), enables quantitative measurement of the free hole concentration and mobility. In undoped (n-type) material, combined Hall and thermopower measurements, along with a considering of the scattering mechanisms, leads to a quantitative understanding of the crucial role of charged line defects in limiting electron transport.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70B20P</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Dislocation</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Dislocations</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Addition magnésium</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Magnesium additions</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Concentration impureté</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Impurity density</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Concentración impureza</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Dopage</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Doping</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Doping</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Epitaxie jet moléculaire</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Molecular beam epitaxy</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Couche accumulation</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Accumulation layers</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Couche inversion</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Inversion layers</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Centre donneur</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Donor center</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Centro dador</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Effet Hall</s0>
<s5>11</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Hall effect</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Effet Seebeck</s0>
<s5>12</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Seebeck effect</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Mobilité porteur charge</s0>
<s5>13</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Carrier mobility</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Nitrure d'indium</s0>
<s5>15</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Indium nitride</s0>
<s5>15</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Indio nitruro</s0>
<s5>15</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
<s5>16</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
<s5>16</s5>
</fC03>
<fN21>
<s1>023</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001407 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 001407 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:12-0043530
   |texte=   Taming transport in InN : Indium Nitride and Related Alloys
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024